Prev

Next

The Development of 5G Network 5G is the trend of the whole world, today I would like to share you the development of 5G network. In 2008, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed. In 2012, the UK Government announced the establishment of...

Read more

E-LINS Router FAQ - - Config Q: If we have your routers how do we monitor them? A: ythere are several types for monitor. 1) Web (local and remote) 2) SMS 3) SNMP 4) Telnet/SSH/CLI 5) Centre monitor server with E-Lins ODM software

Read more

IoT WORLD FORUM 2017 Conference information: IoT WORLD FORUM 2017 will be held in London, November 15-16 – 2017 IoT WORLD FORUM, 2017 is the world’s leading Internet of Things Conference 2017 focusing on IoT applications, IoT Solutions and IoT Companies for all verticals including automotive, healthcare, asset and fleet management,...

Read more

E-Lins New Product H820q —— 5 Powerful Wifi Antenna... Best way to assemble H820Q wifi antenna WiFi1---to 5Ghz Main; WiFi2--to 5Ghz Aux WiFi3--to 5Ghz Aux2(for special wifi module)   WiFi4--to 2.4Ghz Main WiFi5--to 2.4Ghz Aux    

Read more

Differences between industrial class and SOHO class... As we know, the devices mainly cover three classes, that is SOHO class, Industrial class and Military class.  Each class has its own application requirement. The SOHO class modem and router don’t meet the requirements of the industrial environment and standard entirely because of it is designed for office automation....

Read more

twitter

The Development of 5G Network

Category : Technologies, Wireless M2M, Worldwide Focus

5G is the trend of the whole world, today I would like to share you the development of 5G network.
In 2008, the South Korean IT R&D program of “5G mobile communication systems based on beam-division multiple access and relays with group cooperation” was formed.
In 2012, the UK Government announced the establishment of a 5G Innovation Centre at the University of Surrey – the world’s first research centre set up specifically for 5G mobile research.
In 2012, NYU WIRELESS was established as a multidisciplinary research centre, with a focus on 5G wireless research, as well as its use in the medical and computer-science fields. The centre is funded by the National Science Foundation and a board of 10 major wireless companies (as of July 2014) that serve on the Industrial Affiliates board of the centre. NYU WIRELESS has conducted and published channel measurements that show that millimeter wave frequencies will be viable for multi-gigabit-per-second data rates for future 5G networks.
In 2012, the European Commission, under the lead of Neelie Kroes, committed 50 million euros for research to deliver 5G mobile technology by 2020. In particular, The METIS 2020 Project was the flagship project that allowed reaching a worldwide consensus on the requirements and key technology components of the 5G. Driven by several telecommunication companies, the METIS overall technical goal was to provide a system concept that supports 1,000 times higher mobile system spectral efficiency, compared to current LTE deployments. In addition, in 2013, another project has started, called 5GrEEn, linked to project METIS and focusing on the design of green 5G mobile networks. Here the goal is to develop guidelines for the definition of a new-generation network with particular emphasis on energy efficiency, sustainability and affordability.
In November 2012, a research project funded by the European Union under the ICT Programme FP7 was launched under the coordination of IMDEA Networks Institute (Madrid, Spain): i-JOIN (Interworking and JOINt Design of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks). iJOIN introduces the novel concept of the radio access network (RAN) as a service (RANaaS), where RAN functionality is flexibly centralized through an open IT platform based on a cloud infrastructure. iJOIN aims for a joint design and optimization of access and backhaul, operation and management algorithms, and architectural elements, integrating small cells, heterogeneous backhaul and centralized processing. Additionally to the development of technology candidates across PHY, MAC, and the network layer, iJOIN will study the requirements, constraints and implications for existing mobile networks, specifically 3GPP LTE-A.
In January 2013, a new EU project named CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks) was launched under the technical supervision of IMDEA Networks Institute, to design sustainable networking and software solutions for the deployment of very dense, heterogeneous wireless networks. The project targets sustainability targeted in terms of cost effectiveness and energy efficiency. Very high density means 1000x higher than current density (users per square meter). Heterogeneity involves multiple dimensions, from coverage radius to technologies (4G/LTE vs. Wi-Fi), to deployments (planned vs. unplanned distribution of radio base stations and hot spots).
In September 2013, the Cyber-Physical System (CPS) Lab at Rutgers University, NJ, started to work on dynamic provisioning and allocation under the emerging cloud radio-access network (C-RAN). They have shown that the dynamic demand-aware provisioning in the cloud will decrease the energy consumption while increasing the resource utilization. They also have implemented a test bed for feasibility of C-RAN and developed new cloud-based techniques for interference cancellation. Their project is funded by the National Science Foundation.
In November 2013, Chinese telecom equipment vendor Huawei said it will invest $600 million in research for 5G technologies in the next five years. The company’s 5G research initiative does not include investment to productize 5G technologies for global telecom operators. Huawei will be testing 5G technology in Malta.
In 2015, Huawei and Ericsson are testing 5G-related technologies in rural areas in northern Netherlands.
In July 2015, the METIS-II and 5GNORMA European projects were launched. The METIS-II project builds on the successful METIS project and will develop the overall 5G radio access network design and to provide the technical enablers needed for an efficient integration and use of the various 5G technologies and components currently developed. METIS-II will also provide the 5G collaboration framework within 5G-PPP for a common evaluation of 5G radio access network concepts and prepare concerted action towards regulatory and standardization bodies. On the other hand, the key objective of 5G NORMA is to develop a conceptually novel, adaptive and future-proof 5G mobile network architecture. The architecture is enabling unprecedented levels of network customizability, ensuring stringent performance, security, cost and energy requirements to be met; as well as providing an API-driven architectural openness, fuelling economic growth through over-the-top innovation. With 5G NORMA, leading players in the mobile ecosystem aim to underpin Europe’s leadership position in 5G.
Additionally, in July 2015, the European research project mmMAGIC was launched. The mmMAGIC project will develop new concepts for mobile radio access technology (RAT) for mmwave band deployment. This is a key component in the 5G multi-RAT ecosystem and will be used as a foundation for global standardization. The project will enable ultra fast mobile broadband services for mobile users, supporting UHD/3D streaming, immersive applications and ultra-responsive cloud services. A new radio interface, including novel network management functions and architecture components will be designed taking as guidance 5G PPP’s KPI and exploiting the use of novel adaptive and cooperative beam-forming and tracking techniques to address the specific challenges of mm-wave mobile propagation. The ambition of the project is to pave the way for a European head start in 5G standards and to strengthen European competitiveness. The consortium brings together major infrastructure vendors, major European operators, leading research institutes and universities, measurement equipment vendors and one SME. mmMAGIC is led and coordinated by Samsung. Ericsson acts as technical manager while Intel, Fraunhofer HHI, Nokia, Huawei and Samsung will each lead one of the five technical work packages of the project.
In July 2015, IMDEA Networks launched the Xhaul project, as part of the European H2020 5G Public-Private Partnership (5G PPP). Xhaul will develop an adaptive, sharable, cost-efficient 5G transport network solution integrating the fronthaul and backhaul segments of the network. This transport network will flexibly interconnect distributed 5G radio access and core network functions, hosted on in-network cloud nodes. Xhaul will greatly simplify network operations despite growing technological diversity. It will hence enable system-wide optimisation of Quality of Service (QoS) and energy usage as well as network-aware application development. The Xhaul consortium comprises 21 partners including leading telecom industry vendors, operators, IT companies, small and medium-sized enterprises and academic institutions.
In July 2015, the European 5G research project Flex5Gware was launched. The objective of Flex5Gware is to deliver highly reconfigurable hardware (HW) platforms together with HW-agnostic software (SW) platforms targeting both network elements and devices and taking into account increased capacity, reduced energy footprint, as well as scalability and modularity, to enable a smooth transition from 4G mobile wireless systems to 5G. This will enable that 5G HW/SW platforms can meet the requirements imposed by the anticipated exponential growth in mobile data traffic (1000 fold increase) together with the large diversity of applications (from low bit-rate/power for M2M to interactive and high resolution applications).
In July 2015, the SUPERFLUIDITY project, part of the European H2020 Public-Private Partnership (5G PPP) and led by CNIT, an Italian inter-university consortium, was started. The SUPERFLUIDITY consortium comprises telcos and IT players for a total of 18 partners. In physics, superfluidity is a state in which matter behaves like a fluid with zero viscosity. The SUPERFLUIDITY project aims at achieving superfluidity in the Internet: the ability to instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and shift them transparently to different locations. The project tackles crucial shortcomings in today’s networks: long provisioning times, with wasteful over-provisioning used to meet variable demand; reliance on rigid and cost-ineffective hardware devices; daunting complexity emerging from three forms of heterogeneity: heterogeneous traffic and sources; heterogeneous services and needs; and heterogeneous access technologies, with multi-vendor network components. SUPERFLUIDITY will provide a converged cloud-based 5G concept that will enable innovative use cases in the mobile edge, empower new business models, and reduce investment and operational costs.
In September 2016, China’s Ministry of Industry and Information Technology announced that the government-led 5G Phase-1 test of key wireless technologies for future 5G networks were completed with satisfactory results. The tests were carried out in 100 cities and involved seven companies – Datang Telecom, Ericsson, Huawei, Intel, Nokia Shanghai Bell, Samsung and ZTE. The next step in 5G technology development involving trials is under way, with planned commercial deployment in 2022 or 2023. In April 2017 Huawei announced that it jointly with Telenor conducted successful 5G tests with speeds up to 70 Gbit/s in a controlled lab environment in Norway. The E-band multi-user MIMO can provide a 20 Gbit/s speed rate for a single user. Working as a supplementary low-frequency band, the E-band improves the user experience of enhanced mobile broadband (eMBB).
(from Wikipedia)

E-LINS Router FAQ – – Config

Category : FAQ, Technologies, Wireless M2M, Worldwide Focus

Q: If we have your routers how do we monitor them?
A: ythere are several types for monitor.
1) Web (local and remote)
2) SMS
3) SNMP
4) Telnet/SSH/CLI
5) Centre monitor server with E-Lins ODM software

IoT WORLD FORUM 2017

Category : Technologies, Wireless M2M, Worldwide Focus

Conference information:

IoT WORLD FORUM 2017 will be held in London, November 15-16 – 2017

IoT WORLD FORUM, 2017 is the world’s leading Internet of Things Conference 2017 focusing on IoT applications, IoT Solutions and IoT Companies for all verticals including automotive, healthcare, asset and fleet management, manufacturing, security, retail point of sales, smart grid, smart metering, smart home and consumer electronics industry.

For more information, please visit the event site here: http://iotinternetofthingsconference.com

E-Lins New Product H820q —— 5 Powerful Wifi Antenna Assembling

Category : FAQ, Products, Solutions, Technologies, Wireless M2M

Best way to assemble H820Q wifi antenna

WiFi1—to 5Ghz Main;

WiFi2–to 5Ghz Aux

WiFi3–to 5Ghz Aux2(for special wifi module)

 

WiFi4–to 2.4Ghz Main

WiFi5–to 2.4Ghz Aux

 

 

E-Lins router FAQ —— Voltage

Category : FAQ, Products

Q: What voltage does your router apply to?

A: 5-40V by default.

Q:What if I want to apply to 48V, can I use the default one?

A: No, please don’t. If you use the default one under 48V, it will burn the router. Here we have 5-50V and 5-60V for option. You can note it and inquiry sales.